Интеграл

Интеграл је један од најважнијих појмова математичке анализе. Постоји више врста интеграла, међу којима су најпознатији неодређени, одређени, Стилтјесов и други.
Неодређени интеграл се уводи као функција у извесном смислу инверзна диференцирању, односно као скуп свих примитивних функција за функцију која се интеграли. Одређени (или Риманов) интеграл се уводи помоћу тзв. интегралних сума. Иако је проучавање ових интеграла у почетку текло независно, чувена је формула која успоставља везу између њих - Њутн-Лајбницова формула.
Неодређени интеграл
Под неодређеним интегралом назива се скуп свих примитивних функција функције и означава се са:
где се назива „подинтегралном функцијом (интеграндом)”, док је „подинтегрални израз”.
Одређени интеграл

Да би се могао увести појам одређеног интеграла, пре свега је потребно увести појмове поделе сегмента, параметра поделе, скупа изабраних тачака поделе и Дарбуове суме.
Под поделом сегмента се сматра било који коначан непразан скуп са елементима , где је и . Параметар ове поделе јесте за . Скуп изабраних тачака ове поделе је скуп са елементима за које важи за све . Дарбуова сума функције са датом поделом и скупом изабраних тачака је .
Сада је, по дефиницији, одређени интеграл функције на сегменту таква константа за коју важи
- ,
где су — подела сегмента , — скуп изабраних тачака поделе , — параметар поделе и — Дарбуова сума функције при подели и скупу изабраних тачака . Тада се каже да је интеграбилна на . Број који задовољава горенаведени критеријум се означава са
- .
Важно је назначити да немају све функције одређени интеграл на неком сегменту. Таква је Вајерштрасова функција која реалан број пресликава у 1 ако и само ако је рационалан и није 0, а иначе у 0. Испоставља се да је потребан и довољан услов да нека буде интеграбилна на неком сегменту њена прекидност у коначно много (или ни у једној) тачака тог сегмента.
Основна теорема интегралног рачуна
Основна теорема интегралног рачуна (која се често назива Њутн-Лајбницовом формулом) даје везу одређеног и неодређеног интеграла. Њом је доказано да се вредност одређеног интеграла може рачунати помоћу неодређеног интеграла (антидеривације) по формули:
где је -{F(x)}- примитивна функција (антидеривација) функције -{f(x)}-.
Методе интегрирања
За разлику од деривирања, интегрирање је знатно сложенији поступак. Док се познавањем таблице деривација елементарних функција и правила за деривирање (збира, разлике, производа, количника и сложене функције) може деривирати свака функцију, код интегрирања поступак није тако једноставан. Интегрирање познаје само два (елементарна) правила:
- Правило за интегрирање функције помножене скаларом
- Правило за интегрирање збира и разлике функција
Не постоје правила за интегрирање производа, количника или сложене функције, а многи интеграли су доказано нерјешиви помоћу елементарних функција, попут интеграла .
Три основне методе које се користе за решавање интеграла су[1]:
- Метода непосредне интеграције је метода у којој је циљ да се подинтегрална функција -{f(x)}- запише на математички еквивалентан начин, који омогућава интегрирање помоћу таблице основних интеграла. На пример, не постоји правило за интегрирање умношка , али ако се подинтегрална функција запише свођењем израза на заједничку базу x, , интеграл се решавамо уз помоћ таблице основних интеграла.
- Метода супституције је метода којом се део или цела подинтегрална функција замењује једноставнијим изразом.
- Метода парцијалне интеграције је метода чија је основна формула изведена из формуле за деривирање умношка. Смисао методе је, према поступку описаном формулом, део подинтегралне функције деривирати, а део интегрисати (отуда и назив парцијална интеграција). Циљ је да се добије једноставнији облик интеграла.
Неправи интеграл

Неправи интеграл је проширење концепта интеграла на полуотворене сегменте или на интервал , с тим да рубна тачка -{b}- може бити бесконачна и функција у околини тачке -{b}- може бити неограничена.[2]
Размотримо функцију . Помоћу неправог интеграла може се скупу испод графа те функције, и изнад осе x, на доделити његова површина и то на овај начин:
У том случају написани лимес се назива неправим интегралом. Ако постоји тај лимес онда се каже да интеграл конвергира. Обично се у литератури неправи интеграл записује исто као и обичан интеграл, па читатељ треба испитивањем подинтегралне функције и граница интеграције да утврди о којем је интегралу реч.
Види још
- Неодређени интеграл
- Таблични интеграли
- Површински интеграл
- Запремински интеграл
- Списак интеграла рационалних функција
- Списак интеграла ирационалних функција
- Списак интеграла експоненцијалних функција
- Списак интеграла логаритамских функција
- Списак интеграла тригонометријских функција
- Списак интеграла хиперболичких функција
- Списак интеграла инверзних тригонометријских функција
Референце
Литература
- Шаблон:Cite book.
- I.S. Gradshteyn (И. С. Градштейн), I.M. Ryzhik (И. М. Рыжик); Alan Jeffrey, Daniel Zwillinger, editors. Шаблон:Cite book, seventh edition. Academic Press. 2007. . Errata. (Several previous editions as well.)
- A.P. Prudnikov (А. П. Прудников), Yu.A. Brychkov (Ю. А. Брычков), O.I. Marichev (О. И. Маричев). Шаблон:Cite book. First edition (Russian), volume 1–5, Nauka, 1981−1986. First edition (English, translated from the Russian by N.M. Queen), volume 1–5, Gordon & Breach Science Publishers/CRC Press, 1988–1992. . Second revised edition (Russian), volume 1–3, Fiziko-Matematicheskaya Literatura, 2003.
- Yu.A. Brychkov (Ю. А. Брычков). Шаблон:Cite book. Russian edition, Fiziko-Matematicheskaya Literatura, 2006. English edition, Chapman & Hall/CRC Press. 2008. .
- Шаблон:Cite book. Chapman & Hall/CRC Press. 2002. . (Many earlier editions as well.)
- Шаблон:Cite book
- Шаблон:Cite book
- David Bierens de Haan, Nouvelles Tables d'Intégrales définies (Engels, Leiden, 1862)
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book. In particular chapters III and IV.
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Citation
- Шаблон:Cite book
- Шаблон:Citation
Available in translation as Шаблон:Citation - Шаблон:Cite book
(Originally published by Cambridge University Press, 1897, based on J. L. Heiberg's Greek version.) - Шаблон:Citation
- Шаблон:Cite book
- Шаблон:Citation
- Шаблон:Cite book
- Шаблон:Citation
- Шаблон:Citation
- Шаблон:Citation
- Шаблон:Citation
- Шаблон:Cite book
- Шаблон:Citation
- Шаблон:Citation
- Шаблон:Citation.
- Шаблон:Cite book.
- Шаблон:Citation
- Keisler, H. Jerome, Elementary Calculus: An Approach Using Infinitesimals, University of Wisconsin
- Stroyan, K. D., A Brief Introduction to Infinitesimal Calculus, University of Iowa
- Mauch, Sean, Sean's Applied Math Book, CIT, an online textbook that includes a complete introduction to calculus
- Crowell, Benjamin, Calculus, Fullerton College, an online textbook
- Garrett, Paul, Notes on First-Year Calculus
- Hussain, Faraz, Understanding Calculus, an online textbook
- Johnson, William Woolsey (1909) Elementary Treatise on Integral Calculus, link from HathiTrust.
- Kowalk, W. P., Integration Theory Шаблон:Wayback, University of Oldenburg. A new concept to an old problem. Online textbook
- Sloughter, Dan, Difference Equations to Differential Equations, an introduction to calculus
- Numerical Methods of Integration at Holistic Numerical Methods Institute
- P. S. Wang, Evaluation of Definite Integrals by Symbolic Manipulation (1972) — a cookbook of definite integral techniques
Спољашње везе
- Теорија и задаци на [1]
- Риманови редови - Интеграција функција (Џава симулација)
- Функција, извод и интеграл (Џава симулација)
- Интегратор Волфрам рисрча
- Калкулатор функција од WIMS
- Шаблон:Springer
- -{Online Integral Calculator, Wolfram Alpha.}-
- -{Online Integral Calculator, by MathsTools.}-
Шаблон:Математичка анализа Шаблон:Нормативна контрола
- ↑ Шаблон:Cite web
- ↑ Svetozar Kurepa: Matematička analiza 2 funkcije jedne varijable, Tehnička knjiga, Zagreb, 1971. (str. 231-234)