1 − 2 + 4 − 8 + ⋯
У математици, 1 − 2 + 4 − 8 + ... је бесконачан ред чији чланови су узастопна степен двојке са наизменичним знацима. Као геометријски ред, окарактерисан је својим првим чланом, 1, и својом количником, −2.
Како ред реалних бројева дивергира, тако у уобичајеном смислу нема суму. У много ширем смислу, серија има општи збир ⅓.
Историјски аргументи
Готфрид Лајбниц је сматрао наизменични дивергентни ред 1 − 2 + 4 − 8 + 16 − ... већ 1673. Он је тврдио да би се одузимањем, или слева или здесна, могла произвести позитивна или негативна бесконачност, а самим тим оба одговора су погрешна и све треба да буде коначно:
- "Сада нормално природа бира средину, ако ни једно од та два није дозвољено, односно ако се не може утврдити које од њих је дозвољено, цела је једнака коначној количини. "
Лајбниц није баш тврдио да је низ имао збир, али је закључио везу са ⅓ следећег Меркаторовог метода.[1][2] Став да је серија могла бити нека коначна количина без стварног додавања до ње као сума би била уобичајена у 18. веку, мада се не прави разлика у модерној математици.[3]
Након што је Кристијан Волф прочитао Лајбницово тумачење Грандијевог низа усред 1712. године,[4] Волф је био толико задовољан решењем да је настојао да прошири аритметички метод до више дивергентног реда као што је 1 − 2 + 4 − 8 + 16 − .... Укратко, ако неко изражава парцијалну суму овог реда као функцију претпостављених чланова, добија се или (4м + 1)/3 или (−4н + 1)/3. Аритметичка средина ових вредности је (2м − 2н + 1)/3, и под претпоставком да је м=н у бесконачности даје ⅓ као вредност серије. Лајбницова инситуција га је спречавала да напреже своје решење овако далеко, и он је написао да је Волфова идеја била интересантна, али неважећа из неколико разлога. Аритметичка средства суседних парцијалних сума не конвергирају до посебних вредности, и за све коначне случајеве имамо да је н=2м, не н=м. Генерално, члан редова који се могу сабирати треба да се смањи до нуле; чак се 1 − 1 + 1 − 1 + ... може изразити као граница таквог низа. Лајбниц саветује Волфа да размотри то да он може да произведе нешто вредно од науке и себе.[5]
Модерне методе
Геометријски ред
У овом случају a = 1 и r = −2, тако да је збир ⅓.
Ојлерово сабирање
У његовим Институтионс из 1755. године, Леонард Ојлер је ефективно узео оно што се сада зове Ојлерова трансформација 1 − 2 + 4 − 8 + ..., долазећи до конвергентних редови ½ − ¼ + ⅛ − 1/16 + .... Како је каснији збир ⅓, Ојлер је закључиио да је 1 − 2 + 4 − 8 + ... = ⅓.Шаблон:Sfn Његове идеје за бесконачни ред не прате слепо подерни приступ; данас се каже да је 1 − 2 + 4 − 8 + ... могуће сабрати помоћу Ојлеровог сабирања и тада је Ојлеров збир ⅓.[6]

Ојлерова трансформација почиње редом позивитних чланова:
- a0 = 1,
- a1 = 2,
- a2 = 4,
- a3 = 8, ...
Ред коначне разлике је онда
- Δa0 = a1 − a0 = 2 − 1 = 1,
- Δa1 = a2 − a1 = 4 − 2 = 2,
- Δa2 = a3 − a2 = 8 − 4 = 4,
- Δa3 = a4 − a3 = 16 − 8 = 8, ...,
што је исти ред. Отуда поновљена малопређашња разлика редова који почињу са Δna0 = 1 за свако н. Ојлерова трансформација је низ
Ово је конверентни геометријски ред чији је збир ⅓ по уобичајеној формули.
Борел збир
Борел збир 1 − 2 + 4 − 8 + ... је такође ⅓; када је Емил Борел увео гранично формулисање Бореловог збира 1896. године, ово је био један од првих његових примера после 1 − 1 + 1 − 1 + ...Шаблон:Sfn
Референце
Литература
- Шаблон:Cite book
- Шаблон:Cite journal
- Шаблон:Cite book
- Шаблон:Cite journal
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- ↑ Шаблон:Harvnb
- ↑ Шаблон:Harvnb
- ↑ Шаблон:Harvnb
- ↑ Wolff's first reference to the letter published in the Acta Eruditorum appears in a letter written from Halle, Saxony-Anhalt dated 12 June 1712; Gerhardt pp. 143–146.
- ↑ The quotation is Moore's (pp. 2–3) interpretation; Leibniz's letter is in Gerhardt pp. 147–148, dated 13 July 1712 from Hanover.
- ↑ See Korevaar pp. 325.