Nelinearni sistem
U matematici i nauci, nelinearni sistem je sistem u kome promena izlaza nije proporcionalna promeni na ulazu.[1][2][3] Nelinearni problemi su važni za inženjere, biologe,[4][5][6] fizičare,[7][8] matematičare i mnoge druge naučnike, jer je većina sistema po svojoj prirodi nelinearna.[9] Nelinearni dinamički sistemi, koji opisuju promene promenljivih tokom vremena, mogu se činiti haotičnim, nepredvidljivim ili kontraintuitivnim, za razliku od mnogo jednostavnijih linearnih sistema.
Tipično, ponašanje nelinearnog sistema opisano je u matematici nelinearnim sistemom jednačina, koje su skup istovremenih jednačina u kojima se nepoznate (ili nepoznate funkcije u slučaju diferencijalnih jednačina) pojavljuju kao promenljive polinoma sa stepenom većim od jedan ili u argumentu funkcije koja nije polinom stepena jedan. Drugim rečima, u nelinearnom sistemu jednačina jednačine koje treba rešiti ne mogu se zapisati kao linearna kombinacija nepoznatih promenljivih ili funkcija koje se pojavljuju u njima. Sistemi se mogu definisati kao nelinearni, bez obzira da li se poznate linearne funkcije pojavljuju u jednačinama. Konkretno, diferencijalna jednačina je linearna ako je linearna u odnosu na nepoznatu funkciju i njene derivate, čak i ako je nelinearna u pogledu ostalih promenljivih koje se u njoj pojavljuju.
Kako je nelinearne dinamičke jednačine teško rešiti, nelinearni sistemi se obično aproksimiraju linearnim jednačinama (lineararizacija). To dobro funkcioniše do neke tačnosti i određenog opsega ulaznih vrednosti, mada se neki zanimljivi fenomeni, poput solitona, haosa,[10] i singulariteta, skrivaju linearizacijom. Iz ovog sledi da se neki aspekti dinamičkog ponašanja nelinearnog sistema mogu činiti kontratuktivnim, nepredvidljivim ili čak haotičnim. Iako takvo haotično ponašanje može da liči na slučajno ponašanje, ono zapravo nije randomno. Na primer, neki aspekti vremenskih prilika izgledaju haotično, pri čemu jednostavne promene u jednom delu sistema proizvode složene efekte širom sistema. Ova nelinearnost je jedan od razloga zašto su precizne dugoročne metereološke prognoze nemoguće sa sadašnjom tehnologijom.
Neki autori koriste termin nelinearna nauka za izučavanje nelinearnih sistemsa. Drugi to osporavaju, poput Stanislava Ulama: „Korištenje izraza kao što je nelinearna nauka slično je pozivanju na najveći deo zoologije kao na proučavanje neslonovskih životinja.”[11]
Definicija
U matematici, linearna mapa (ili linearna funkcija) je ona koja zadovoljava sledeća svojstva:
- Aditivnost ili princip superpozicije:
- Homogenost:
Aditivnost podrazumeva homogenost za svako racionalno α, i, za neprekidne funkcije, za svako realno α. Za kompleksno α, homogenost ne sledi iz aditivnosti. Na primer, antilinearna mapa je aditivna, ali nije homogena. Uslovi aditivnosti i homogenosti se često kombinuju u principu superpozicije
Jednačina napisana kao
se naziva linearnom ako je linearna mapa (kao što je gore definisanao), a inače nonlinearna. Jednačina se naziva homogenom ako je .
Definicija je veoma generalna u smislu da može da bude bilo koji senzibilni matematički objekat (broj, vektor, funkcija, etc.), i funkcija može doslovno da bude bilo koje mapiranje, uključujući integraciju ili diferencijaciju sa asociranim ograničenjima (kao što su granične vrednosti). Ako sadrži diferencijaciju u odnosu na , rezultat će biti diferencijalna jednačina.
Nelinearne algebrske jednačine
Nelinearne algebarske jednačine, koje se takođe nazivaju polinomskim jednačinama, definisane su izjednačavanjem polinoma (stepena većeg od jedan) sa nulom. Na primer,
Za pojedinačnu polinomsku jednačinu, algoritmi nalaženje korena se mogu koristiti za nalaženje rešenja jednačine (tj. skupa vrednosti promenljivih koje zadovoljavaju jednačinu). Međutim, sistemi algebarskih jednačina su komplikovaniji; njihovo proučavanje je jedna od motivacija polja algebarske geometrije, tegobne grane savremene matematike. Često je teško čak i da se odluči da li određeni algebrski sistem ima kompleksna rešenja (pogledajte teoremu nula[12][13]). Ipak, u slučaju sistema sa ograničenim brojem složenih rešenja, ovi sistemi polinomnih jednačina su sada dobro izučeni i postoje efikasne metode za njihovo rešavanje.[14]
Reference
Literatura
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Springer
- Шаблон:MathWorld
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite journal
- Шаблон:Cite book
- Шаблон:Cite journal
- Шаблон:Cite book
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book and Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite bookШаблон:Мртва веза
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- Christophe Letellier, Chaos in Nature, World Scientific Publishing Company, 2012, Шаблон:ISBN.
- Шаблон:Cite book
- Шаблон:Cite book
- Шаблон:Cite book
- John Briggs and David Peat, Turbulent Mirror: : An Illustrated Guide to Chaos Theory and the Science of Wholeness, Harper Perennial 1990, 224 pp.
- John Briggs and David Peat, Seven Life Lessons of Chaos: Spiritual Wisdom from the Science of Change, Harper Perennial 2000, 224 pp.
- Шаблон:Cite journal
- Predrag Cvitanović, Universality in Chaos, Adam Hilger 1989, 648 pp.
- Leon Glass and Michael C. Mackey, From Clocks to Chaos: The Rhythms of Life, Princeton University Press 1988, 272 pp.
- James Gleick, Chaos: Making a New Science, New York: Penguin, 1988. 368 pp.
- Шаблон:Cite book
- L Douglas Kiel, Euel W Elliott (ed.), Chaos Theory in the Social Sciences: Foundations and Applications, University of Michigan Press, 1997, 360 pp.
- Arvind Kumar, Chaos, Fractals and Self-Organisation; New Perspectives on Complexity in Nature , National Book Trust, 2003.
- Hans Lauwerier, Fractals, Princeton University Press, 1991.
- Edward Lorenz, The Essence of Chaos, University of Washington Press, 1996.
- Alan Marshall (2002) The Unity of Nature: Wholeness and Disintegration in Ecology and Science, Imperial College Press: London
- David Peak and Michael Frame, Chaos Under Control: The Art and Science of Complexity, Freeman, 1994.
- Heinz-Otto Peitgen and Dietmar Saupe (Eds.), The Science of Fractal Images, Springer 1988, 312 pp.
- Clifford A. Pickover, Computers, Pattern, Chaos, and Beauty: Graphics from an Unseen World , St Martins Pr 1991.
- Clifford A. Pickover, Chaos in Wonderland: Visual Adventures in a Fractal World, St Martins Pr 1994.
- Ilya Prigogine and Isabelle Stengers, Order Out of Chaos, Bantam 1984.
- Heinz-Otto Peitgen and P. H. Richter, The Beauty of Fractals : Images of Complex Dynamical Systems, Springer 1986, 211 pp.
- David Ruelle, Chance and Chaos, Princeton University Press 1993.
- Ivars Peterson, Newton's Clock: Chaos in the Solar System, Freeman, 1993.
- Шаблон:Cite book
- David Ruelle, Chaotic Evolution and Strange Attractors, Cambridge University Press, 1989.
- Manfred Schroeder, Fractals, Chaos, and Power Laws, Freeman, 1991.
- Peter Smith, Explaining Chaos, Cambridge University Press, 1998.
- Ian Stewart, Does God Play Dice?: The Mathematics of Chaos , Blackwell Publishers, 1990.
- Steven Strogatz, Sync: The emerging science of spontaneous order, Hyperion, 2003.
- Yoshisuke Ueda, The Road To Chaos, Aerial Pr, 1993.
- M. Mitchell Waldrop, Complexity : The Emerging Science at the Edge of Order and Chaos, Simon & Schuster, 1992.
- Antonio Sawaya, Financial Time Series Analysis : Chaos and Neurodynamics Approach, Lambert, 2012.
Spoljašnje veze
- -{Command and Control Research Program (CCRP)}-
- -{New England Complex Systems Institute: Concepts in Complex Systems}-
- -{Nonlinear Dynamics I: Chaos at MIT's OpenCourseWare Шаблон:Wayback}-
- -{Nonlinear Model Library Шаблон:WaybackШаблон:Snd (in MATLAB) a Database of Physical Systems}-
- -{The Center for Nonlinear Studies at Los Alamos National Laboratory Шаблон:Wayback}-
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite news
- ↑ Шаблон:Cite web
- ↑ Шаблон:Citation
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite book
- ↑ Nonlinear Dynamics I: Chaos Шаблон:Webarchive at MIT's OpenCourseWare Шаблон:Wayback
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Citation
- ↑ Шаблон:Citation
- ↑ Шаблон:Cite journal