Лукас број

- Не треба мешати са Лукас редовима, генеричке класе редова којима припадају Лукас бројеви.
Лукас бројеви или Лукас редови су цели бројеви редова названи по математичару Франкуису Едуарду Анатолу Лукасу (1842–91), који је проучавао оба та реда и блиско повезане Фибоначијеве бројеве. Лукас бројеви и Фибоначијеви бројеви формирају комплементарне случајеве Лукас редова.
Дефиниција
Лукас бројеви могу бити дефинисани на следећи начин:
Ред Лукас бројева је:
- Шаблон:OEISOEIS).
Проширење до негативних целих бројева
Користећи Лн−2 = Лн − Лн−1, можемо проширити Лукас бројеве до негативних целих бројева да добијемо двоструки бесконачни низ: ..., −11, 7, −4, 3, −1, 2, 1, 3, 4, 7, 11, ... чланови за су показани). Формула за чланове са негативним индексом у овом низу је
Повезаност са Фибоначијевим бројевима
Лукас бројеви су повезани са Фибоначијевим бројевима идентитетима
- , и како се приближава +∞, однос се приближава
Њихова затворена формула је дата као:
где је такође златни пресек. Алтернативно, како је за величина чланова мања од 1/2, је најближи цео број броју или, еквивалентно, целобројни део , пише се и као .
Насупрот томе, како Бинетова формула даје:
имамо:
Односи подударности
Ако је Фn ≥ 5 Фибоначијев број онда ниједан Лукас број није дељив Фн.
Лn је у складу за 1 мод n ако је n прост број, али неке композитне вредности n-а такође имају ову особину.
Лукас прости бројеви
Лукас прост број је Лукас број који је прост. Првих неколико Лукас простих бројева су -ом
- 2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... Шаблон:OEIS.
За ове нс су
- 0, 2, 4, 5, 7, 8, 11, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353, 503, 613, 617, 863, 1097, 1361, 4787, 4793, 5851, 7741, 8467, ... Шаблон:OEIS.
Ако је Лн прост број онда је n или 0, прост, или степен 2.[1] Л2м је прост број за м = 1, 2, 3, и 4 и нема више познатих вредности за м.
Лукас полиноми
На исти начин на који су Фибоначијеви полиноми изведени из Фибоначијевих бројева, Лукас полиноми Лн(x) су полиноми реда изведени из Лукас бројева.
Види још
Референце
Спољашње везе
- Hazewinkel, Michiel, ed. (2001), "Finite-difference calculus" Encyclopedia of Mathematics, Springer. Шаблон:Page
- Weisstein, Eric W., "Lucas Number", MathWorld.
- Weisstein, Eric W., "Lucas Polynomial", MathWorld.
- Dr Ron Knott
- Lucas numbers and the Golden Section
- A Lucas Number Calculator can be found here.
- (sequence A000032 in OEIS) Lucas Numbers in the On-Line Encyclopedia of Integer Sequences.
Шаблон:Класе простих бројева Шаблон:Класе природних бројева
- ↑ Chris Caldwell, "The Prime Glossary: Lucas prime" from The Prime Pages.