Дирихлеова функција

Извор: testwiki
Пређи на навигацију Пређи на претрагу
Mодификована Дирихлеова функција (Томаова функција): D(x)=1x,x и D(x)=0,x.

Дирихлеова функција добила је назив по немачком математичару Јохану Дирихлеу. Немац Карл Тома ју је модификао у Томаову функцију.

Дефиниција

Дирихлеова функција је функција реалне променљиве D:{0,1} дефинисана као:

D(x)={1,x,0,x,

односно функција чији домен чине сви реални бројеви, а кодомен само бројеви 0 и 1. Ова функција је дефинисана тако да за све рационалне бројеве узима вредност 1, а за све ирационалне бројеве узима вредност 0.

Од саме Дирихлеове функције, интересантнија је (поготово графички) њена модификована верзија, која се назива Томаова функција. Овако предефинисана функција D: гласи:

D(x)={1x,x,0,x.

Прекидност

Из Кошијевог критеријума конвергенције за функције, може се лако показати да током целог њеног домена постоје бројеви x и y такви да важи |x − y| < δ and |f(x) − f(y)| ≥ ε, односно функција је ненепрекидна, тј. прекидна је у свакој тачки свог домена.

Периодичност

Дирихлеова функција је периодична, али нема основни период.

Литература

  • Душан Аднађевић, Зоран Каделбург: Математичка анализа 1, Студентски трг, Београд, 1995.

Види још

Шаблон:Нормативна контрола